
Encounter-Based Simulation Architecture for
Detect-And-Avoid Modeling

Mohamad Refai ∗ and Michael Abramson† and Seungman Lee‡

Crown Consulting, Inc., Moffett Field, California, 94035

Gilbert Wu §

NASA Ames Research Center, Moffett Field, California, 94035

This paper presents an encounter-based simulation architecture developed at NASA to
facilitate flexible and efficient Detect and Avoid modeling in parametric or tradespace studies
on large data sets. The basic premise of this tool is that large-scale input data can be reduced to a
set of ‘canonical encounters’ and that using the reduced data in simulations does not lead to loss
of fidelity. A canonical encounter is specified as ownship and intruder flight portions potentially
resulting in a loss of well clear along with a set of properties that characterize the encounter.
The advantages of using canonical encounters include faster simulations, reduced memory
footprint, ability to select encounters based on user-specified criteria, shared encounters across
multiple teams, peer-reviewed encounters, and a better understanding of the input data set, to
name a few.

Glossary
CPA Closest Point to Approach
DAA Detect-and-Avoid
DWC DAA Well Clear
HITL Human-in-the-Loop
HMD Horizontal Miss Distance
JADEM Java Architecture for DAA Extensibility and Modeling
Low SWaP Low Size, Weight, and Power
LoWC Loss of Well Clear
MOPS Minimum Operational Performance Standards
NAS National Airspace System
NMAC Near Mid-Air Collision
RADES 84th Radar Evaluation Squadron
UAS Unmanned Aircraft Systems
VFR Visual Flight Rules
VMD Vertical Miss Distance

I. Introduction

Successful integration of Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS) is predicated
upon maintaining the same level of safety and performance as achieved by current manned operations. To ensure

that safety and performance goals are achievable, various data collection and analysis methods are employed in
developing UAS Minimum Operational Performance Standards (MOPS) [1]. These methods include first principle
engineering analyses, human-in-the-loop simulations, live flight tests, and fast-time simulations. Regardless of the

∗Senior Engineer, M/S 210-8, mohamad.s.refai@nasa.gov
†Senior Engineer, M/S 210-8, Member AIAA, michael.abramson@nasa.gov
‡Senior Scientist, M/S 210-8, AIAA Member, seungman.lee@nasa.gov
§Aerospace Engineer, Aviation Systems Division, M/S 210-10, Member AIAA, gilbert.wu@nasa.gov

1



methodologies employed, a main challenge is identifying representative data sets to use in foundational studies and
safety and performance assessments. For system-wide assessments, the challenge is two-fold. First, UAS mission data
is not available at the anticipated densities. Second, UAS will operate in managed and unmanaged airspace, so, Visual
Flight Rules (VFR) traffic data is also required.

An approach to provide representative data sets was developed by MIT Lincoln Laboratory [2], wherein radar data
from the 84th Radar Evaluation Squadron (RADES) is used to estimate VFR initial conditions and trajectories. The
data are sampled to create a database of statistical features of these flights. These statistics are then sampled to create
new trajectories with characteristics consistent with the original trajectories. Encounters are modeled by sampling one
or more trajectories that satisfy ‘proximity’ criteria. The model therefore generates encounters representing VFR to
VFR encounters.

The approach taken at NASA has been to develop a set of UAS mission profiles that represent today’s view of future
expected UAS operations and missions [3]. Nineteen missions and their corresponding geographical locations and
operating schedules were developed with extensive contributions from subject matter experts [4]. To model intruder
traffic, RADES data for 21 days of varying traffic density were selected and processed to provide smoothed VFR
trajectories [5]. These VFR and UAS data have been used to conduct several foundational NAS-wide and parametric
fast-time simulations in support of MOPS development [3, 6–10]. While this approach has proven quite valuable to
MOPS development, it suffers from several shortcomings, which include:

• The total duration of encounters is a small fraction of the time of flight, so a full end-to-end simulation is wasteful.
• UAS maneuvers, when employed, alter the remaining UAS trajectory and the characteristics of following
encounters, making data comparison difficult.

• VFR data is rather extensive and consequently, simulations consume considerable resources, despite various
optimizations, and results include considerably more data than is typically required.

• A priori scenario selection is not possible.
• The data are not currently shared mainly due to size and computational requirements.
• Simulation results can be moderately sensitive to flight mechanics models, computational optimizations, etc; this
complicates comparisons of alternative approaches.

This paper describes an encounter-based simulation architecture aimed at addressing these challenges. Simply
put, this new approach uses the RADES and UAS mission data to identify and persist potential encounters, which are
subsequently used in various Detect and Avoid (DAA) simulations and analyses. The process of identifying encounters
also generates a set of corresponding encounter properties, which can be used to pre-select encounters of interest to a
particular study. This approach marks a shift from past NAS-wide simulations by focusing on the events of interest and
simulating only the relevant portions of flight instead of full end-to-end departure to destination modeling.

In what follows, we discuss this approach and its benefits in more detail. The next section defines encounters
and scenarios and describes the encounter-based simulation architecture. Section III describes canonical encounter
detection. Section IV discusses encounter properties and their uses. Section V describes scenario selection using
encounter properties and typical uses cases. Sample results are provided in Section VI. Finally, concluding remarks are
presented in Section VII.

II. Encounter-Based Architecture
The new architecture is based on a decomposition of the processing steps used in our research when running

NAS-wide fast time simulations. This decomposition is depicted in Fig. 1 and will henceforth be referred to as
a “processing pipeline”. The figure is simplified to depict unmitigated simulations and omits miscellaneous other
optimizations. In preparation for running DAA on a given ownship, we first predict UAS trajectory states using a flight
mechanics model. We then determine if an alert is likely using a series of gross filters and subsequently create the
encounters to be processed. Noise is then optionally added before running DAA alerting and guidance algorithm and
persisting the results. A subsequent post-processing step is used to generate metrics for reporting and analysis purposes.
This processing pipeline has the following charactersitics:

• The pipeline is fixed and requires code modification to change.
• Any time a simulation is executed, the Java Architecture for DAA Extensibility and Modeling (JADEM) [11]
portion of the pipeline is executed in full even when the resulting perturbed encounters are unchanged between
runs.

• Encounters are not persisted in a standard format.
• The pipeline lacks a mechanism to control or select the types of encounters processed.

2



Fig. 1 Current processing pipeline

By refactoring these processing steps into independent modules, we can eliminate wasteful processing, change order
of steps where applicable, and allow for additional steps to be interspersed where desired. Furthermore, by modularizing
the processing pipeline, we allow it to be composited from available modules or alternative module implementations.
Fig. 2 depicts one realization of a modular processing pipeline that applies a perturbation module and a scenario
selection module prior to running DAA with various settings for a parametric or tradespace study. See Section V.A for
other examples. In the figure, we persist and load data in between all processing steps but it should be noted that this is
not a requirement. UAS missions are modeled using a flight mechanics model and saved as trajectory states. VFR and
UAS states are then processed to detect encounters, which are subsequently perturbed. In the scenario selection step, a
subset of the resulting perturbed encounters are selected for DAA processing. Finally, the DAA data is processed to
generate metrics of interest. UAS mission modeling, encounter generation, perturbations, and scenario selection are
executed once, whereas DAA can be executed multiple times for different configurations.

Fig. 2 Modular processing pipeline

Encounters For our purposes, we define encounters to include trajectory portions from one ownship and one or more
intruders that can potentially cause loss of well clear, an alert, or peripheral guidance [1] with the ownship. Peripheral
guidance is guidance information corresponding to an intruder that is not itself alerted [1, §2.2.4.4]. In addition to traffic
data, a set of properties describing encounter characteristics of interest are also included in the encounter definition (see
Section IV for details). This facilitates selective processing of encounters as dictated by research needs (see Sections
IV.A and V). Note that an encounter, as defined here, includes one ownship only, so multiple ownship coordinated
maneuvers are not modeled. A “canonical” encounter is one that is generated from source data such as VFR traffic and
UAS data.

Pairwise Encounters The above definition of an encounter is quite general but for many foundational studies, the
interaction with multiple intruders is of less interest; instead single intruder interactions are desired. For these cases,
pairwise encounters composed of one ownship and one intruder are more appropriate. Such encounters are referred to
as pairwise encounters. Note that multi-intruder encounters can be created by composition of pairwise encounters of the
same ownship that overlap temporally. Pairwise encounters can therefore be considered as fundamental building blocks
for creating more general or complex encounters.

Scenarios A scenario is a means to specify the encounters to be processed by DAA. It is defined as the set of
encounters that satisfy specified criteria. For example, a scenario may include only those encounters whose ownship

3



speed is within a specified range. Scenarios are typically generated by selecting from one or more sets of encounters
such as those obtained from data for different days. Scenarios can also be created by filtering encounters from other
scenarios In addition to the list of encounters, a scenario specification includes a reference to the source data and the
encounter selection criteria used to generate the scenario. The source data can be another scenario, multiple scenarios,
or the set of VFR and UAS data. Referencing source data and selection criteria in the scenario specification provides
traceability of scenario data; this is depicted in Fig. 3.

Fig. 3 Scenario Tree

1. A Note About Encounter Ownship Trajectory Data
An encounter’s ownship trajectory data can be represented as a set of trajectory states or as a mission profile, which

is typically a portion of the full mission profile. In most simulations, trajectory state data is sufficient. However, if
a simulation requires mission recapture, then the relevant portion of the mission profile must also be included in the
encounter.

A. Scalable Architectures
The encounter-based architecture described above is particularly suited to scalable and big data architectures.

Scalable concurrent execution is much simplified given that encounters are independent of one another. The modular
nature of the pipeline also facilitates understanding of the data volumes to be processed at each step and the typical
processing times involved. This simplifies data and processing architecture design dictated by research needs. Hybrid
systems can be considered, which leverage scalable architectures for some processing steps and big data architectures
for others. These can be combined to result in a flexible end-to-end solution from data acquisition to metric reports.

III. Encounter Detection
The goal of the core encounter detection algorithm is to extract encounters from input ownship and intruder flight

data.

A. Encounter Detection Criteria
Ownship and intruder flights for an encounter are selected by applying user-defined predicates (boolean expressions)

to pairs of ownship and intruder states. The simplest predicate is a cylindrical “hockey puck” (a static disc). If this
predicate is used, the encounter is determined by comparing horizontal distance dhoriz and vertical distance dvert

between ownship and intruder states for the same time with specified horizontal and vertical separation thresholds
d∗
horiz
, d∗vert .

(dhoriz < d∗horiz ) ∧ (dvert < d∗vert ) (1)

d∗
horiz
, d∗vert in condition 1 should be large enough to ensure that any alerts and well clear violations will result

in an encounter. Fig. 4 shows one of the alerting structures that have been evaluated for UAS. The Buffered Well
Clear Criteria (separation standards) in this table include a combination of Horizontal Miss Distance (HMD), vertical

4



separation, and modified tau-separation. The time to Closest point of Approach (CPA) tCPA from Alerting Time
Threshold column is more conservative and easier to use to estimate the minimal acceptable values for d∗

horiz
and d∗vert .

Fig. 4 An example of alerting structure

The largest distance between ownship and intruder causing an alert corresponds to situation of head-on encounter.
This distance can be estimated as a product of approach speed ∆Vhoriz , which is an intruder’s speed relative to ownship,
and the time to CPA from Alerting Time Threshold column in Figure 4. In simulations considered in this paper, the air
speed of UAS (ownship) and VFR traffic (intruders) does not exceed 300 knots that corresponds to ∆Vhoriz < 600knots.
The largest tCPA in Alerting Time Threshold column for Preventive or Corrective Alert (Figure 4) is 90 seconds.
Therefore, the minimal value for d∗

horiz
= ∆Vhoriz · tCPA = 15 nmi.

A similar estimate based on assumption of relative vertical speed ∆Vvert not exceeding 6000 fpm leads to the
minimal value for d∗vert = ∆Vvert · tCPA = 9000 ft.

Therefore, the values d∗
horiz

= 20 nmi and d∗vert = 10000 ft or higher can be used for generating encounters if target
application is simulations with alerting structure similar to shown in Figure 4.

B. Encounter Detection Algorithm
The encounter detection algorithm uses ownship and intruder trajectories represented as time series position and

velocity data. These trajectories may start and end at any time and need not be contiguous; therefore, data gaps are
allowed.

The algorithm proceeds as follows (see Fig. 5):
1) Prefilter aircraft states to reduce the amount of computations.
2) Apply predicates to identify encounters.
3) Post-filter to remove unusable encounters such as those with very short duration.

Fig. 5 Encounter Detection

Prefiltering is done in two steps. The goal of first step (the coarse filter) is to quickly identify the intruders, which
could in principle come close to each ownship within a specified look-ahead time. This is done by mapping all initial
intruder horizontal positions to a fixed horizontal grid, as described in [11].

Further prefiltering is done by skipping time-steps on the remaining flights. The amount of time to skip is estimated
from the time it would take ownship and intruder to be within the horizontal and vertical thresholds in a worst case if

5



they have instantly turned to a collision course. Note that the amount of time that can be skipped, and hence the number
of computations at prefiltering step, does not depend on time step.

Once the amount of time-to-skip becomes close to a time step, the prefiltering ends and further calculations are
repeated at every time step. All sequential intruder states that satisfy the condition defined by Eq. 1 are included in
the encounter for this intruder. The encounter may include more than one intruder if there is a time overlap between
trajectory segments of different intruders that satisfy the condition of Eq. 1 for the same ownship.

The last optional step of encounter detection algorithm involves filtering out the encounters shorter than a specified
minimum duration (e.g. 30 seconds).

The remaining encounters are persisted to the data store along with a corresponding scenario specification (see
Section V for more details).

IV. Encounter Properties
A number of properties are defined as a part of encounter detection process and persisted for each encounter. The

most important of these properties are listed below.
EncounterID a unique numeric identifier of this encounter
OwnshipAcID the callsign (ACID) of ownship flight
OwnshipAcType the aircraft type of ownship used to determine its performance in trajectory

generation process
EncounterStartTime encounter start time defined as the first time when condition given in Eq. 1 was

satisfied at least for one intruder
EncounterEndTime encounter end time defined as the last time when condition given in Eq. 1 was

satisfied at least for one intruder
EncounterDuration encounter duration defined as the difference between EndTime and StartTime
OwnshipFlightPhase the ownship’s flight phase during the encounter
OwnshipAirspaceClass the ownship’s airspace class during the encounter
Intruder.IntruderAcID the intruder’s callsign (ACID)
Intruder.IntruderFlightPhase the intruder’s flight phase during the encounter
Intruder.OwnshipSpeedAtCpa ownship speed at CPA
Intruder.OwnshipAltitudeAtCpa ownship altitude at CPA
Intruder.IntruderSpeedAtCpa intruder speed at CPA
Intruder.IntruderAltitudeAtCpa intruder altitude at CPA
Intruder.SlantCpa.HorizontalDistance horizontal distance dhoriz between ownship and intruder at CPA
Intruder.SlantCpa.VerticalDistance vertical distance dvert between ownship and intruder at CPA
Intruder.SlantCpa.Time time of CPA
Intruder.MinHmd minimum Horizontal Miss Distance (HMD) [11] over encounter duration
Intruder.MinVmd minimum Vertical Miss Distance (VMD) over encounter duration; the VMD is

defined here as zero for vertically converging flights and as altitude difference
between ownship and intruder states otherwise

Intruder.HorizontalClosureRate horizontal closure rate ḋhoriz at CPA
Intruder.ViolatedNmac indicates whether an intruder is in a NMAC defined as

(dhoriz < 500 f t) ∧ (dvert < 100 f t)
The “.” notation is used to indicate the grouping of related properties. It is also used in a search path when looking

up the properties in “filters” described in IV.A. In particular, all intruder-specific properties are grouped by intruder.
In addition to these “general properties” that don’t depend on specific separation standards, several “DAA properties”

can be defined, such as the properties of Loss of Well Clear (LoWC) and alerts of different “levels” corresponding to
a particular alerting structure, such as shown in Fig. 4. These DAA properties are calculated by processing results
generated by JADEM. The processing pipeline for generating all encounter properties is shown in Fig. 6.

6



Fig. 6 Encounter Properties Generation

A. Encounter Filtering
The main use of encounter properties is to select the encounters of interest for a particular study or application. The

technique used for this involves creating user-defined “filters” and is referenced herein as “encounter filtering”.
A filter is defined as one or more predicates (boolean expressions). Each predicate compares a property specified

via its path in the property files to a constant (threshold) or list of constants with appropriate units. The supported
comparison operators are equality, strict and non-strict inequality, and “ContainedIn” and “NotContainedIn” operators.
The last two operators are used to check whether the property has one of several specified values defined in a list. The
predicates can be combined using AND and OR logical operators.

For instance, a user may define a filter to select encounters for a particular OwnshipAcType. Another example could
be selecting all encounters with OwnshipAltitudeAtCpa below certain altitude in feet for EncounterDuration above
a specified threshold in seconds that have a ViolatedNmac = false (i.e. don’t result in NMAC). One especially useful
filter is selecting encounters with Intruder.MinHmd and Intruder.MinVmd properties that don’t exceed H MD∗ and
ZTHR thresholds (Figure 4), since only these encounters can alert or result in LoWC.

Applying the filter to a scenario results in another scenario including only a subset of encounters that passed the
filter. This process is schematically shown in Fig. 7.

Fig. 7 Encounter Filtering

V. Scenario Selection
This section describes how the encounter detection and filtering methodology introduced in Sections III and IV.A is

typically used in simulations (see Fig. 3 for a depiction of this process).
The first step is to generate scenarios for available VFR and UAS data sets. These scenarios include all pairwise

canonical encounters detected using a conservative predicate as described in III.A. As a result, these scenarios typically
include many more encounters than are strictly required for a particular study. For instance, many encounters may not
result in any events of interest, such as alert, LoWC, or NMAC.

To “tailor” scenarios to a study, researchers create filters to be used to select encounters of interest as described
in Section IV.A. Filters may be defined using DAA independent properties or they may be defined using properties
generated by running a scenario through JADEM as shown in Fig. 6. In the latter case, JADEM is typically run with
conservative settings that form a superset of all the design parameters required for the study. The encounter filtering
process shown in Fig. 7 can be repeated several times using different filters.

The resulting scenario is processed through JADEM to generate DAA data, which are subsequently processed to
generate aggregate metrics for analysis and reporting. Note that the most computationally expensive operation, namely,

7



the generation of canonical encounters and computation of their properties, need only be performed once; the resulting
encounters can then be used for many different studies.

A. Use Cases and Benefits
The benefits of this approach can be illustrated by several use cases.
1) Evaluating alternate DAAWell Clear (DWC) definitions. In this case, the desired encounters are those that

will generate an alert for at least one of the DWC definitions being evaluated. Therefore, the canonical encounters
are processed once through JADEM using the most conservative DWC definition, which covers all the DWC
definitions. The resulting alerted encounters are then selected for use in the comparative study.

2) Selecting Low Size, Weight, and Power (SWaP) encounters. Low SWaP sensors are typically installed on
relatively small and slow UAS flying below 10000 ft. Therefore, low SWaP encounters can be selected using
filters composed from predicates on OwnshipAcType, OwnshipSpeedAtCpa, OwnshipAltitudeAtCpa, and
possibly others, depending on specific goals of the study.

3) Selecting Terminal Area encounters. Terminal area encounters can be selected using such properties as
OwnshipAirspaceClass, OwnshipAltitudeAtCpa, and OwnshipFlightPhase.

4) Selecting flight-phase-specific encounters. For studies focused on characterization of encounters by flight
phase (e.g. level-level, level-climb, climb-descent, etc), encounters can be selected using OwnshipFlightPhase
and IntruderFlightPhase properties. It should be noted, however, that IntruderFlightPhase may be
difficult to determine from non-cooperative flight data.

5) Validating canonical encounters. To experimentally validate the encounters generated by the encounter
detection process, one could compare JADEM results using original VFR and UAS data to the results using
canonical encounters generated for a test case. Should the results differ meaningfully, the encounter predicate is
adjusted and the process repeated. This is depicted in Fig. 8.

Fig. 8 Validating Canonical Encounters

VI. Results
This section compares the performance of the encounter-based approach to that of the “old” approach, which

modeled flights from departure to destination.
The comparisons were performed using 21 days of VFR traffic with a parametric suite of 96 individual configurations

each. The baseline computation times, using the old approach, were estimated from an average day using one
representative configuration rather than from the full suite of 2016 simulation runs. The processing pipeline used in this
comparison study is depicted in Fig. 9.

The overall approach can be summarized in four steps:
1) Detect pairwise encounters.
2) Filter out all encounters that will not violate any of the Low SWaP DWC definitions; this is accomplished through

the use of a conservative DWC that covers all the Low SWaP DWC definitions.
3) Combine the resulting encounters into a single scenario.
4) Process the scenario through DAA and generate the metrics.
The first step is to generate the trajectories for all UAS flights; trajectory generation uses the model described in [11].

The flight times are subsequently adjusted for each simulation day. For each of the 21 days, pairwise encounters are

8



Fig. 9 Experiment Pipeline

detected along with their properties, which include HMD, VMD, and UAS and VFR speeds and altitudes at CPA. To
filter all redundant encounters that will have no chance of violating the Low SWaP DWC definitions, we use the DWC
definition published in the Phase 1 MOPS. This is accomplished as follows:

1) HMD & VMD Filter: Create a filter that compares an encounter’s minimum HMD and VMD against the HMD
and Vertical Separation thresholds given in Phase 1 DWC. This creates a scenario of the remaining encounters.

2) Phase 1 DAA: Process the resulting scenario through JADEM configured for Phase 1 DWC alerting.
3) DAA Filter: Use the alert results to filter encounters, thus creating a scenario containing only those encounters

that alert on Phase 1 DWC.
4) Low SWaP Filter: Apply a speed and altitude filter on the resulting scenario to remove all encounters whose

speeds and altitudes exceed the Low SWaP performance limits. The resulting scenario will include only Low
SWaP encounters that alert on Phase 1 DWC.

The resulting scenarios for the 21 days are small enough that they can be combined into a single scenario. This
is done in order to reduce the number of simulations, since we are only interested in the overall results not those of
individual days. As a result, we only have to contend with 96 instead of 2,016 (96 × 21) simulations.

Table 1 summarizes the salient computational performance figures. For each step in the pipeline (cyan colored
rows), the table reports the average time per run, the number of runs, the total time for all runs, and where applicable,
the total number of input encounters, the total number of output encounters, and the average time per input encounter.
Also reported in the table are the estimated times (salmon colored rows) had the simulations been run using JADEM as
shown in Fig. 1. These time estimates were obtained from a single run and scaled to all 2,016 runs. The main takeaways
from the table are that filtering is key to improving the overall performance and that using the new processing pipeline
reduced the total computation time five-fold.

Table 1 Performance Metrics

Processing Step Average
Time (hr) #

Total
Time (hr)

Total Input
Encounters

Total Output
Encounters

Time (ms) Per
Encounter

Trajectory Generation 0.75 1 0.75 – – –
Encounter Detection 1.23 21 days 25.9 – – –
HMD/VMD Filter (Phase 1) 0.42 21 days 8.8 9,692,090 2,106,610 3.3
Phase 1 DAA 1.93 21 days 40.6 2,106,610 – 69
DAA Filter (Phase 1) 0.14 21 days 2.9 2,106,610 129,394 5.0
Low SWaP Filter 0.0 21 days 0.0 129,394 82,524 0.7
Scenario Merge 0.0 1 scenario 0.0 82,524 82,524 0.0
Low SWaP DAA 3.60 96 cases 346 7,922,304 – 157
DAA Data Analysis 8.69 96 cases 834 7,922,304 – 379
Metrics 0.00 96 cases 0.2 – – –
Total – – 1,259 – – –

Legacy DAA Processing 1.8 21 × 96 3,651
Legacy DAA Data Analysis 1.5 21 × 96 3,024
Legacy Total – – 6,675 – – –

9



In Table 1, all I/O operations were to the file system, with I/O over the network consuming approximately twice as
much time as local I/O. In the early stages of the pipeline, where the data volumes are large, the processing time is
dominated by I/O. This is especially true for encounter detection where computations consumed only 20% of the total
time. Note that all calculations were performed without any parallelization.

VII. Conclusion
NASA uses JADEM to conduct fast-time parametric and tradespace studies in support of UAS integration in the

NAS. These studies use NAS-wide VFR data and projected UAS missions. Simulations are conducted on the full
airspace data, modeling flights from departure to destination. As a result, simulations are time consuming, require
substantial computational resources, and are wasteful since the events of interest represent a small fraction of flight
time. Furthermore, research studies often require selective processing of encounters but the current tools do not provide
mechanisms for selecting encounters a priori. Finally, sharing the voluminous NAS-wide data with our partners is
cumbersome. To address these issues, JADEM was refactored to an encounter-centric processing pipeline composed of
a set of decoupled modules. This design has been shown to have the following advantages:

• Reduced memory footprint and processing time.
• Flexible scenario generation.
• Flexible DAA processing pipeline, with swappable modules.
• Standardized Encounter, Scenario, and Filtering representations.
• Canonical encounters that can be shared across multiple teams.
• Increased transparency.

Acknowledgments
Wewish to express gratitude to our fellowDAA team developers for their tireless efforts to realize the encounter-based

simulation architecture.

References
[1] SC-228, Detect and Avoid Minimum Operational Performance Standards Phase I (DAA MOPS), RTCA, Washington, DC, 2017.

[2] Weinert, A. J., Harkleroad, E. P., Grith, J., Edwards, M. W., and Kochenderfer, M. J., “Uncorrelated Encounter Model of the
National Airspace System, Version 2.0,” Tech. Rep. ATC-404, MIT Lincoln Laboratory, Lexington, Massachusetts, August
2013.

[3] Lee, S., Park, C., Thipphavong, D., Isaacson, D., and Santiago, C., “Evaluating Alerting and Resolution Performance of a
UAS Detect-And-Avoid (DAA) System,” Tech. Rep. NASA/TM-2016-219067, NASA Ames Research Center, Moffett Field,
California, February 2016.

[4] Ayyalasomayajula, S., Wieland, F., Trani, A., and Hinze, N., “Unmanned Aircraft System Demand Generation and Airspace
Performance Impact Prediction,” Proceedings of the 32nd IEEE Digital Avionics Systems Conference, IEEE, Syracuse, NY,
2013.

[5] Park, C., Lee, H., and Musaffar, B., “Radar Data Tracking Using Minimum Spanning Tree-Based Clustering Algorithm,” 11th
AIAA Aviation Technology, Integration, and Operations (ATIO) Conference (AIAA-2011-6825), AIAA, Virginia Beach, VA,
2011.

[6] Lee, S., Park, C., Johnson, M., and Mueller, E., “Investigating Effects of “Well Clear” Definitions on UAS Sense-And-Avoid
Operations,” 2013 AIAA Aviation Technology, Integration, and Operations Conference, AIAA, Los Angeles, CA, 2013.

[7] Park, C., Lee, S., and Mueller, E., “Investigating Detect-and-Avoid Surveillance Performance for Unmanned Aircraft Systems,”
2014 AIAA Aviation Technology, Integration, and Operations Conference, AIAA, Atlanta, GA, 2014.

[8] Johnson, M., Mueller, E., and Santiago, C., “Characteristics of a Well Clear Definition and Alerting Criteria for Encounters
between UAS andManned Aircraft in Class E Airspace,” 10th USA/Europe ATM Research and Development Seminar, ATM2015,
ATM Seminar, Lisbon, Portugal, 2015.

[9] Cone, A., Thipphavong, D., Lee, S., and Santiago, C., “UAS Well Clear Recovery against Non-Cooperative Intruders using
Vertical Maneuvers,” 17th AIAA Aviation Technnology (AIAA-2017-4382), AIAA, Denver, Colorado, 2017.

10



[10] Thipphavong, D., Cone, A., and Lee, S., “Ensuring Interoperability between UAS Detect-and- Avoid and Manned Aircraft
Collision Avoidance,” Twelfth USA/Europe Air Traffic Management Research and Development Seminar, ATM2017, ATM
Seminar, Seattle, Washington, 2017.

[11] Abramson, M., Refai, M., and Santiago, C., “The Generic Resolution Advisor and Conflict Evaluator (GRACE) for Unmanned
Aircraft Detect-And-Avoid Systems,” Tech. Rep. NASA/TM-2017-219507, NASA Ames Research Center, Moffett Field,
California, 2017.

11


	Introduction
	Encounter-Based Architecture
	A Note About Encounter Ownship Trajectory Data
	Scalable Architectures

	Encounter Detection
	Encounter Detection Criteria
	Encounter Detection Algorithm

	Encounter Properties
	Encounter Filtering

	Scenario Selection
	Use Cases and Benefits

	Results
	Conclusion

